Wednesday 5 March 2014

Mechanism and Action



The human androgen receptor bound to testosterone. The protein is shown as a ribbon diagram in red, green, and blue, with the steroid shown in white.
The pharmacodynamics of anabolic steroids are unlike peptide hormones. Water-soluble peptide hormones cannot penetrate the fatty cell membrane and only indirectly affect the nucleus of target cells through their interaction with the cell’s surface receptors. However, as fat-soluble hormones, anabolic steroids are membrane-permeable and influence the nucleus of cells by direct action. The pharmacodynamic action of anabolic steroids begin when the exogenous hormone penetrates the membrane of the target cell and binds to an androgen receptor located in the cytoplasm of that cell. From there, the compound hormone-receptor diffuses into the nucleus, where it either alters the expression of genes or activates processes that send signals to other parts of the cell. Different types of anabolic steroids bind to the androgen receptor with different affinities, depending on their chemical structure.Some anabolic steroids such as methandrostenolone bind weakly to this receptor in vitro, but still exhibit androgenic effects in vivo. The reason for this discrepancy is not known.
The effect of anabolic steroids on muscle mass is caused in at least two ways: first, they increase the production of proteins; second, they reduce recovery time by blocking the effects of stress hormone cortisol on muscle tissue, so that catabolism of muscle is greatly reduced. It has been hypothesized that this reduction in muscle breakdown may occur through anabolic steroids inhibiting the action of other steroid hormones called glucocorticoids that promote the breakdown of muscles. Anabolic steroids also affect the number of cells that develop into fat-storage cells, by favouring cellular differentiation into muscle cells instead. Anabolic steroids can also decrease fat by increasing basal metabolic rate (BMR), since an increase in muscle mass increases BMR.